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Abstract

A

It is often necessary to predict the reliability of a system when
only the mean lifetimes of its components are known, Then it is usually
assumed that each component has a constant failure rate (equal to the
reciprocal of its mean lifetime) and that component failures occur
independently. It is customary to express the prediction in terms
of some constant failure rate for the system. Questions arise as to when
this procedure is precise, and if it is not precise, what constant values
for the system failure rate give reasonable approximations for the actual

system failure rate function.

In this paper these questions are answered in the case that com-

ponents (a) fail independently and (b) have constant failure rates. Then
-

it is well known that the failure rate of a series system is constant and
equal to the sum of the component failure rates. When (a) and (b) hold,
the system failure rate can be constant only for a series system. For
other than series systems approximate constant failure rates should be
chosen to lie beween two bounds that can be computed from the component
failure rates. (The lower bound is the sum of the component failure rates
for those components that can cause system failure by their single, isolated
failure. The upper bound is the smallest sum of component failure rates that
can be obtained for any set of components that can insure the functioning of
the system by all functioning.) For such choices the predicted system
reliability will be accurate for a mesion of some particular duration,
smaller than the actual system reliability for shorter migsions, and larger

than the actual system reliability for longer missions. For any other choice

the prediction will always be too large or too small,.
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1. Introduction

It {s a familiar practice to convert a given, or estimated, mean
lifetime (mean time to failure) for a device into a reliability predic-
tion by assuming that its lifetime has an exponential distribution,

i.e.,

(1.1) If T 20 <8 the random lifetime of a device,
and m = E(T) 18 its mean lifetime, then its
reliability P[T>t] for a mission of duration

t s approximated by

P[T>t] = ¢, ¢ >0,

where )\ = 1/m.

The procedure described in (1l.1) is equivalent to assuming that the

device has a constant hazard (failure) rate X} = 1/m.

When the mean lifetimes of components are used to predict the
reliability of the system, it is also customary to express the predic-
tion in terms of a mean lifetime for the system with the understanding
that (1.1) will be used to approximate reliabilities. It is also usual

in arriving at the prediction to assume that components fail independently,

The practices mentioned above raise the following questions:
Assuming that the lifetimes of components are statistically indcpendert

and have expomential distributions, then:

(1.2) For what systems does the system lifetime actually




have an exponential distribution?
xp

(1.3) For a system whose lifetime is not exponentially dis-
tributed, which exponential distributions give
reasonable approximations to the actual system life-

time distribution?

Part of the answer to Question (1.2) 1is very well known. If the
lifetimes of the components in a series system (i.e., a system that
fails with its first component failure) have exponential distributions,
then the system lifetime has an exponential distribution. We show that

only series systems have this property.

It is also known that if the lifetimes of the components in a

coherent system have exponential distributions, then the system lifetime

has an increasing !iicard (failure) rate average (IHRA) distribution
[Birnbaum, Esary, and Marshall, 1966]. We answer Question (1.3) by
exhibiting an interval in which an approximate, constant system failure
rate must lie if the corresponding approximate, exponential distribution
for the system lifetime is to give the same reliability prediction as

the actual IHRA distribution, at least for a mission of some duration t.

Notation. We use the standard vector notation a = (a,,...5a_ ),
XOEAt 101, 2 1 n

ca = ac = (cal,...,can), and the special convention e 2= (e-al,...,e-a“).

2. The Hazard Transform of a Coherent System

The structur: fuw:2t'c (X ,...,x_) describes the organization of
J l n g

a system; x1 indicates the state of the ith component, with X, = 1l

if the component is functioning and x, = O 1if the component is failed,
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and ¢ indicates the corresponding state of the system, with ¢Q§) = ]

if the system is functioning and ¢(£) = 0 1if the system is failed.

system is coherent if its structure function is increasing in each of its

arguments and is not constant in any of its arguments.
The reliability function h(pl....,pn) is defined by

(2.1) h('g) b P[¢(Xl’.“.xn) = 1],

O.spifl, i‘l,-o..n.
where xl,...,xn are independent Bernoulli random variables with
P[xi-ll =Py and ¢ 1s the structure function of the system.

The hazard transjform n(pl,....on) is defined by

(2.2) n(p) = -log h(e *!,...,e"M),
pizo’ i‘l,!no,n,
where h 1is the reliability function of the system.

In this paper a special role is played by the series system for

which o(x) =T [, 2%, h(p) = T 1,2 p,» and n(p) = 37 j0,.

In the context of Questions (1.2) and (1.3) the components in a

coherent system are assumed to have independent random lifetimes Tl""'Tn'

Let T be the corresponding random lifetime for the system. Then it

follows from (2.1) that

(2.3) P(T>t] = h{P[T1>t], AL P[Tn>t]}, t2o,

EE—— ]

——




by choosing the Bernoulli random variables so that X, = 1 <=> T1 > t,

i
i=1,...,n, and noting that T > t <=> ¢(X) = 1. 1If
R(t) = -log P[T>t], t 20, {.e., P[T>t] = e-R(t), and Ri(t) = -log P[T1>t],

t20, i=1,...,n, then it follows from (2.3) and (2.2) that
(2.4) R(t) = n{Rl(t),...,Rn(t)}, t > 0.

R 1is the hazard function of the random lifetime T and Rl""’Rn
are the hazard functions of T,,...,T . The hazard transform of a coherent
aystem expresses the hazard function of the system lifetime in terms of

the hasard functions of the comporent lifetimes.

For our purposes the hazard transform is a useful description of a
coherent system. If the component lifetimes have exponential distribu-

Aqt

tions, i.e., P[Ti>t] =e 1%, t 20, then their hazard functions are

Ri(t) = A t, 1=1,...,n. Then (2.4) becomes

i
(2.5) R(t) = n()\lt,...,Ant), t20,

i.e., questions such as (1.2) and (1.3) reduce to studies of the behavior

of the hazard transform on rays {A}.tZO} in its domain.

In what follows we will need certain properties of the hazard

transform of a coherent system:
(2.6) n(0,...,0) =0, and n(pl'....pn) > 0 whenever Py > 0,1=1,...,n.
(2.7) n tie increasing in each of ite arguments.

(2.8) n <tis starshaped, ti.e., "(98) < an(p) forall p and all 0 < a < 1.
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(2.9) If n(ap) = an(p) for some ° such that p, > 0,
i=1,...,n, and some 0 < a <1, then the system

18 a series system.

The first two properties above are equivalent to familiar elementary

properties of the structure and reliability functions of coherent systems.

Property (2.8) comes from an inaquality for the reliability function
obtained by Birmbaum, Esary, and Marshall (1966, Theorem 2.1)., The
details of the translations of properties (2.6) through (2.8) into

hazard terminology and the proof of property (2.9) are given in Esary,

Marshall, and Proschan (1969).

Other examples of coherent systems are given in Birnbaum, Esary,

and Saunders (1961) and Barlow and Proschan (1965).

3. Exponential System Lifetimes

If the components i{n a series system have independent, exponentially
distributed lifetimes, then it is easy to confirm the well-known fact

that the system lifetime is exponentially distributed. From (2.5) and

the definition of a series system

3.1) RO = 30 e (300 )e, t20,

where R 1is the system hazard function and Al,...,xn are the component

hazard rates, {.e., R 1is the hazard function of an exponential distribution.,

For the remainder of this paper we will explicitly assume that the
hazard rate of an exponentially distributed lifetime i8 not zero. With

this assumption the ray {A}.tZO} determined by the hazard functions of




a set of exponentially distributed component lifetimes is an intertor
ray, i.e., Xi >0, 1= 1,...,n, (We have already tacitly assumed that
exponential hazard rates are finite, e.g., in writing (2.5) when the

hazard transform is defined for finite arguments.)

The rest of the answer to question (1.2) is then contained in the

following proposition:

(3.2) Proposition. Suppose that the lifetimes of the cormponents in
a coherent system are indepcwvdent and exponentially distributed. If the
system lifetime is exycnentially distributed, then the system is a series

aystem,

Proof. If the system lifetime is exponentially distributed, then

R(t) = pt, t 2 0, for some u > 0, where R is the hazard function of
the system lifetime. Then (2.5) becomes n{lﬁ} = ut, t 2 0, where n
is the hazard transform of the system and Ai >0, 1i=1,...,n, are the

component hazard rates. Consider some t > 0 and some 0 < a < 1,

Let Py ™ A,t, 1 =1,...,n. Then n(qe) = n(ait) = n{lﬂat)} = y(at)

i
= a(pt) = an(At) = an(p). Since p, >0, i1 =1,...,n, the system must
'~ ' i

be a series system by property (2.9). D

4, Initial and Terminal System Hazard Rates

When the components in a cohe rent system have independent, exponen-
tially distributed lifetimes, it follows from (2.5) that the hazard rate

at time ¢t, R'(t) = dR(t)/dt, for the system lifetime is given by

(4.1) R'(t) = n'(Alt,...,xnt), t 20,

ik
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where n'(A}) = dn(&;)/dt, n 1is the hazard transform of the system,

R 1s the system hazard function, and Al,...,kn are the component

hazard rates. For a non-series system, R is not the hazard function of

an exponential distribution by Proposition 3.2, so that R' 1is not a
constant function of t. In Section 5 it is shown that any constant
approximation to R' should lie between R'(0) and limt*mR'(t).
This section is devoted to deriving convenient expressions for these

bounds.

The ith component in a coherent system is a cuf! of the system if
its failure is sufficient to cause the failure of the system, i.e., if
X = 0 implies ¢(x) = 0 where ¢ 1s the structure function of the

system. The derivation which follows shows that on a ray {A},tZO}
' =
(4.2) N0 = 2 ¢ A

where K is the set of all components that are cuts of the system,
We say that My = zi@K A 1s the initial hazard rate for the system

on the ray since from (4.1) R'(0) = Mo

A set of components P 1in a coherent system is a path set if the
functioning of each component in P 1insures the functioning of the

system, i.e., if x, =1 for all i ¢ P implies ¢(x) = 1. The

i

derivation which follows shows that on an interior ray {A;.:zo}

(4.3) Um, n'(QA) = u_,

where

PRy

R i
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Th min{zisl’)‘i; P 1is a path set}.

We say that yu_ 1is the terminal hazard rate for the system on the ray

since from (4.1) limt_mR'(t) F U The same derivation shows that

(4.4) limtw{umt-n(‘é‘t)} = log r,

where r {is the number of path sets P for which EieP)‘i = M.

For a series syster, uy = u_ = zril-lxi from (3.1). The same
conclusion can be obtained directly from the definitions of Mg and
B, 8ince on the one hand each component in a series system is a cut of
the system and on the other hand there is only one path set for a series
system, i.e., the set of all components. For a non-series system KcC P
for any path set P, and furthermore K # P. Thus for a non-series

system and an interior ray, Ho < Mg

-}

The remainder of this section consists of a derivation to confirm

(4.2), (4.3), and (4.4).

From (2.3)
t 'At
(4.5) n'(At) = Syfec) . £ 20,
~ h(eﬂAt

where h'(e-z‘-t) = dh(e-'&t) /dt and h 1is the reliability function of

the system.
From (2.1), h(p) = E{¢(_)5)}, so that

(4.6) he™2h) = 2 4(0P(x,2,8), t 20,



where ¢ 1s the structure function of the system,

-Ait
Ai)

(4.7) P(xs1,t) =TT1€CI(£);M eco(l‘)(l-e .
and C (x) = {i:x;=1}, C,(x) = {1:x,=0}. From (4.6)
(4.8) ') = T 4P (x,0,0, t20,
where P'(.’.‘,'.Z‘.’t) = dP(x,),t)/dt. From (4.7)
(4.9) P'(x,),t) = ‘ciecl(i)"i)"(i'bt)
+ zieco(ﬁ)xip{(li,z)bt},

where (11,35‘) = (xl""’xi-l’l’xiﬂ""’xn)'

From (4.7)

1 1f x =1

(4.10) P(22s0) = o Stherwiss,

where l= (1,...,1). Then from (4.9) and (4.10)

n
zi=1)‘i if x=1

(4.11) P'('):,A,O) = A if ‘E' (01,}'), i CJ 1,..-,!‘[,

i

0 otherwise,

where (01,35) = ("1"""‘1-1'0”‘1+1""”‘n)' Then from (4.6) and

(4.10)
(4.12) hed?) = o)) = 1,

and from (4.8) and (4.11)




v R0y n -n
(4.13) h'(e~) = =) S0 + 2500400
= -2
ek

Then (4.2) follows from (4.5), (4.12), and (4.13).

-~

From (4.7) with X, > 0,

~ “isCl(i) \i' i
i = A
0T o ﬂg‘i‘&‘f—)— 1ot (x,)
t e " 0 if w < p(x,)).
Then from (4.9) and (4.14)
' -u if wo= u(x,0)
(4.15) 1n el
e 0 1f u < u(x,}).
Then from (4.6) and (4.14)
=it
he =) _ i Pxadst)
(4.16) lim e 2£¢(5) lim e

Te.

= z{l‘,“b(l‘)’l'u(l‘.'l)‘um} l=

Similarly from (4.8) and (4.15)

h' (e-z‘-t)

Lo e-umt

Then (4.3) follows from (4.5), (4.16), and (4.17), since

-h' (e7A%) fe7H="
% h(eR5)/ei="

limt_mn "(At) = Um

rum
= — = ,

r @

b € it Rkt ol bt 5 6 421 b

1 =01 e,
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From (2.2)

- e

h(e %)
e

A

th) -y ti= -log ’

so that (4.4) follows from (4.16).

S. Exponential Approximations for System Lifetimes

If the components in a coherent system have independent, exponen-

tially distributed lifetimes, then from (3.1) and Proposition (3.2) the

system lifetime is exponentially distributed if and only if the system
is a series system. Question (1.3) asks what exporential distributions
are reasonable approximations to the actual distribution of the system
lifetime when the system is not a series system, The answer to Question

(1.3) is contained in the following proposition:

5.1 Proposition. Let R be the hazard function of the lifetime of a
eoherent systerm that is not a series system. Suppose that the component
lifetimes are independent and exponentially distributed with hazard rates
)‘1 05 L3 1,...:n: LEd Mo be the initial hazard rate for the

system on the ray {At,t20} and u_ be the terminal hazard rate on

the ray. Then:

(1) If Mo < W < Mg there exisis a tu > 0 such that
R(tu) = wt . Also R(t) <ut 1f 0 <t < tu and

R(t) > pt Zf t > tu.
(11) wyt < R(t) <yt forall > 0.

Proof. From (2.5), R(t) = n(At), ¢t 20, where n is the hazard

% B (- At A e T e S
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transform of the system., Since the system is not a series system,

03 o {cf. Scction 4].

(1) From (4.2) n'(Q0) = Mo and from (4.4) n(lt) is asymptotic
to the straight line u_t -~ logr as t > =. Thus if
Mg S H < B then there is a tu > 0 such that
n(l}“) = utu. Since the system is not a series system
and Ai >0, 1=1,...yn, 1t follows from properties
(2.8) and (2.9) that n {is strictly starshaped on the
ray {at,t20}, fi.e., n{iﬁat)} < an(At) for all
t >0 and all 0 <a <1, Suppose 0 <t < tu and
let a=t/t. Then 0<a<1 and nQt) = nfrat)}

< an(l;u) = autu = ut. Similarly if t > tu, then

n(‘lt) > it

(1i) This conclusion can be proved by arguments similar to those

used for part (i), but is also immediate from the defini-

tions of wu, and u_. D

Proposition (5.1) is illustrated for two simple systems in Figure

1.

Recall that the hazard function R of the system lifetime T {is

related to the reliability of the system for a mission of duration t

by P[T>t] = e-R(t), and that using an exponential distribution for T

with hazard rate u > 0 leads to the approximation P[T>t] z'e-ut.
Part (i) of Proposition (5.1) says that if Mg €M < u, @ exponential

approximation gtves the correct reliability for a mission of some

T T Ty

i
i
i




RO TP '

¢=x,[%—“l—x2Nl-x3H}
Ho=.], fey=.6, T=2

Figure 1. System hazard functions when components
have constant failure rates.
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duration £ > 0, too large a reliability for missions of duration t
such that 0 < t < ts and too small a reliability for missions of

duration t > t . Part (ii) says that ¢f u 2 u, an eaxponential

u 0
approximation gives too large a reliabiliiy for all miscions, and if

w 2w, an exponential approximation gives too small a rcliability for

all missions.

If it is feasible to evaluate the reliability function h of
a coherent system for a given set of arguments, then there is a simple,
standard method for determining an approximate constant system hazard
rate p which gives a correct reliability prediction for a given nominal
mission duration t, i.e., let

-Ant)

T -log h(e-llt,...,e

(5.2) .

where Al....,ln are the component hazard rates. Then from (2.3)
P[T>t] = e_ut, where T is the system lifetime, and it follows from

part (ii) of Proposition (5.1) that u < u < u_.

0



-15-

References

Barlow, Richard E. and Proschan, Frank (1965). Mathematical Theory

of Reliability. Wiley, New York.

Birnbaum, 2. W,, Esary, J. D., and Marshall, A. W. (1966). A stochastic
characterization of wear-out for components and systems. Ann.

Math. Statist. 37 816-825,

Birnbaum, Z. W., Esary, J. D., and Saunders, S. C. (1961). Multi-component

systems and structures and their reliability. Technometrics 3

55-57.

Esary, J. D., Marshall, A, W., and Proschan, F. (1969). Some reliability
applications of the hazard transform. Accepted for publication by

the STAM Journal.

T

00 RSO

e

At e R T s S0 ol 00

|
|
|
|

> STy R R BT




